
1. Trees

We use trees as the abstract view for our lenses; since the concrete
data structure, strings, is ordered, and to support some properties of
lenses that seem sensible intuitively, the trees differ from garden-variety
trees in a number of ways:

• a tree node consists of three pieces of data: a label, a value and
an ordered list of children, each of them a tree by themselves.

• the labels for tree nodes are either words not containing a slash
/ or the special symbol ▷; in the implementation ▷ corresponds
to NULL. The latter is used to indicate that an entry in the tree
corresponds to text that was deleted.

• the children of a tree node form a list of subtrees, i.e. are or-
dered. In addition, several subtrees in such a list may use the
same label. This makes it possible to accommodate concrete
files where entries that are logically connected are stored scat-
tered between unrelated entries like the AcceptEnv entries in
sshd config.

We write k = v 7→ t for a tree node with label k, value v and
children t. If it is clear from the context, or unimportant, v will often
be omitted.

1.1. Tree labels. We take the tree labels from the set of path com-
ponents K = (Σ \ {/})+ ∪ {▷}, that is, a tree label is any word not
containing a backslash or the special symbol ▷. For tree labels, we
define a partial concatenation operator ⊙, as

k1 ⊙ k2 =


k1 if k2 = ▷

k2 if k1 = ▷

undefined otherwise

Defining tree labels in this way (1) guarantees that there is a one–
to–one correspondence between a tree label and the word it came from
in the concrete text and (2) avoids any pain in splitting tree labels in
the put direction.

1.2. Trees. The set of ordered trees T over Σ∗
▷ is recursively defined

as

• The empty tree ▷
• For any words k ∈ K, v ∈ Σ∗

▷ and any tree t ∈ T , [k = v 7→ t]
is in T

• For any n and trees [ki = vi 7→ ti] ∈ Trees, the list [k1 = v1 7→
t1; k2 = v2 7→ t2; . . . ; kn = vn 7→ tn] is in T

1



2

Note that this allows the same key to be used multiple times in a
tree; for example, [a 7→ x; a 7→ x] is a valid tree and different from
[a 7→ x].

The domain of a tree dom(t) is the list of all its labels, i.e. an element
of List(K); for a tree t = [k1 7→ t1; . . . ; kn 7→ tn], dom(t) = [k1; . . . ; kn].

The concatenation of trees t1 · t2 is simply list concatenation.
For sets K ⊂ K and T ⊂ T , [K 7→ T ] denotes the set of all trees

t = [k 7→ t′] with k ∈ K, t′ ∈ T .

1.3. Concatenation and iteration. For a tree t ∈ T , we define its
underlying key language κ(t) by

κ(t) =


/ if t = ▷ or t = [▷ 7→ t1]

k · / if t = [k 7→ t1]

k · / · κ(t2) for t = [k 7→ t1; t2]

where k1 · k2 is normal string concatenation. The key language of a set
of trees κ(T ) is defined as {κ(t)|t ∈ T}.

In analogy to languages, we call two tree sets T1, T2 ⊆ T unambigu-
ously concatenable if the key languages κ(T1) and κ(T2) are unambigu-
ously concatenable. A tree set T ∈ T is unambiguously iterable if the
underlying key language κ(T ) is unambiguously iterable.

1.4. Public tree operations. We need the public API to support the
following operations. The set P ⊆ Σ∗ are paths

• lookup(p, t) : P × T −→ T finds the tree with path p
• assign(p, v, t) : P × Σ∗ × T −→ T assigns the value v to the
tree node p

• remove(p, t) : P × T −→ T removes the subtree denoted by p
• get(p, t) : P × T −→ Σ∗ looks up the value associated with p
• ls(p, t) : P ×T −→ List(T ) lists all the subtrees underneath p

2. Lenses

Lenses map between strings in the regular language C and trees
T ⊆ T . They can also produce keys from a regular language K; these
keys are used by the subtree lens to construct new trees.

A lens l consists of the functions get , put , create, and parse.

Lenses here are written as l : C
K,S,L⇐⇒ T where K and C are regular

languages and T ⊆ T . The skeletons S ⊆ S and dictionary type spec-
ifications L are as for Boomerang (really ??) Intuitively, the notation
says that l is a lens that takes strings from C and transforms them to
trees in T . Generally,



3

C ⊆ Σ∗
▷ K ⊆ List(K) T ⊆ T S ⊆ S L ∈ List(P(S))

l ∈ C
K,S,L⇐⇒ T

get ∈ C −→ T

parse ∈ C −→ K × S ×D(L)

put ∈ T −→ K × S ×D(L) −→ C ×D(L)

create ∈ T −→ K ×D(L) −→ C ×D(L)

2.1. const. The const E t v maps words matching E in the get direc-
tion to a fixed tree t and maps that fixed tree t back in the put direction.
When text needs to be created from t, it produces the default word v.

E ∈ R t ∈ T u ∈ [[E]] L ∈ List(P(S))

const E t u ∈ [[E]]
▷,[[E]],L⇐⇒ {t}

get c = t

parse c = ▷, c, {}
put t (k, s, d) = s, d

create t (k, d) = u, d

The del lens is syntactic sugar: del E u = const E []u.

2.2. copy. Copies a word into a leaf.

E ∈ R L ∈ List(P(S))

copy ∈ [[E]]
▷,[[E]],L⇐⇒ [[[E]]]

get c = [c]

parse c = ▷, c, {}
put [v] (k, s, d) = v, d

create [v] (k, d) = v, d



4

2.3. seq. Gets the next value from a sequence as the key. We assume
there’s a generator nextval : Σ∗ → N that returns successive numbers
on each invocation. D is the regular expression [0-9]+ that matches
positive numbers.

w ∈ Σ∗ L ∈ List(P(S)) n = nextval(w)

seq w ∈ ϵ
[[D]],ϵ,L⇐⇒ []

get ϵ = []

parse ϵ = n, ϵ, {}
put [] (k, ϵ, d) = ϵ, d

create [] (k, d) = ϵ, d

2.4. label. Uses a fixed tree label

w ∈ Σ∗ L ∈ List(P(S))

label w ∈ ϵ
w,ϵ,L⇐⇒ []

get ϵ = []

parse ϵ = w, ϵ, {}
put [] (w, ϵ, d) = ϵ, d

create [] (k, d) = ϵ, d

2.5. key. Uses a parsed tree label

E ∈ R L ∈ List(P(S))

key E ∈ [[E]]
[[E]],ϵ,L⇐⇒ []

get c = []

parse c = c, ϵ, {}
put [] (c, ϵ, d) = c, d

create [] (c, d) = c, d



5

2.6. subtree. The subtree combinator [l] constructs a subtree from l

l ∈ C
K,S,L⇐⇒ T

[l] ∈ C
▷,□,S::L⇐⇒ [K 7→ T ]

get c = [l. key c 7→ l. get c]

parse c = ▷,□, {l. key c 7→ [l. parse c]}

put [k 7→ t] (k′,□, d) =

{
π1

(
l. put t (k, s̄, d̄)

)
, d′ if (k̄, s̄, d̄), d′ = lookup(k, d)

π1 (l. create t (k, {})) , d if lookup(k, d) undefined

create [k 7→ t] (k′, d) = put [k 7→ t] (k′,□, d)

We store a triple (k, s, d) in dictionaries, but we don’t use the stored
key k.

2.7. concat. The concat combinator l1 · l2 joins two trees.

l1 ∈ C1
K1,S1,L⇐⇒ T1 l2 ∈ C2

K2,S2,L⇐⇒ T2 C1 ·! C2 κ(T1) ·! κ(T2)

l1 · l2 ∈ C1 · C2
K1·K2,S1×S2,L⇐⇒ T1 · T2

get (c1 · c2) = (l1. get c1) · (l2. get c2)
parse c1 · c2 = k1 ⊙ k2, (s1, s2), d1 ⊕ d2

put t1 · t2 (k, (s1, s2), d1) = c1 · c2, d3
where ci, di+1 = li. put ti (k, si, di)

create t1 · t2 (k, d1) = c1 · c2, d3
where ci, di+1 = li. create ti (k, di)

2.8. union. The union combinator l1 | l2 chooses.

li ∈ Ci
Ki,Si,L⇐⇒ Ti for i = 1, 2 C1 ∩ C2 = ∅ S1 ∩ S2 = ∅ κ(T1) ∩ κ(T2) = ∅

l1 | l2 ∈ C1 ∪ C2
K1∪K2,S1∪S2,L⇐⇒ T1 ∪ T2



6

get c =

{
l1. get c if c ∈ C1

l2. get c if c ∈ C2

parse c =

{
l1. parse c if c ∈ C1

l2. parse c if c ∈ C2

put t (k, s, d) =


l1. put t (k, s, d) if t, s ∈ T1 × S1

l2. put t (k, s, d) if t, s ∈ T2 × S2

l1. create t (k, d) if t, s ∈ (T1 \ T2)× S2

l2. create t (k, d) if t, s ∈ (T2 \ T1)× S1

create t (k, d) =

{
l1. create t (k, d) if t ∈ T1

l2. create t (k, d) if t ∈ T2 \ T1

2.9. star. The star combinator l∗ iterates.

l ∈ C
K⇐⇒ T C !∗ κ(T )!∗

l∗ ∈ C∗ K∗
⇐⇒ T ∗

get c1 · · · cn = (l. get c1) · · · (l. get cn)
parse c1 · · · cn = k1 ⊙ . . .⊙ kn, [s1; . . . ; sn], d1 ⊕ . . .⊕ dn

where ki, si, di = l. parse ci

put t1 · · · tn (k, [s1; · · · ; sm], d1) = (c1 · · · cn), dn+1

where ci, di+1 =

{
l. put ti (k, si, di) for 1 ≤ i ≤ min(m,n)

l. create ti (k, di) m+ 1 ≤ i ≤ n

create t1 · · · tn (k, d1) = (c1 · · · cn), dn+1

where ci, di+1 = l. create ti (k, di)

Want reordering and insertion in the middle to be reflected. If
get c1 · c2 = t1 · t2, want put (t2 · t1) (c1 · c2) = l. put t2 (c2) · l. put t1 (c1)
This can only happen if the information to be reordered is in subtrees.
In particular, comment lines need to become their own subtree, with
some support from the language to create ‘hidden’ entries. Simplest:
allow NULL as the key for a subtree and ignore such tree entries in the
public API.

Need to split a tree t ∈ T into subtrees according to ?? Keeping
a fake ‘slot’ ▷ around for text that didn’t produce a tree should help
with that.



7

For K∗ to make any sense, must have ▷ ∈ K and the application of
(l∗). parse must return ▷ for all except at most one application.

3. Regular expressions and languages

For type checking, we need to compute the following properties of
regular languages R,R1, R2

• decide unambiguous concatenation R1 ·!R2 and compute R1 ·R2

• decide unambiguous iteration R!∗ and compute R∗

• disjointness R1 ∩ R2 = ∅ (we don’t need general intersection,
though I don’t know of a quicker way to decide disjointness)

• compute the regular language R = [[E]] for a regular expression
E ∈ R


